jueves, 25 de abril de 2013

El gen que transforma una aleta de pez en una pata

La transici?n de los vertebrados acu?ticos hacia las primeras colonizaciones de la tierra firme es una de las im?genes que mejor ilustra en el imaginario popular la historia de la evoluci?n de los seres vivos. Pero esa instant?nea en la que un organismo a medio camino entre un pez con aletas firmes transformadas en patas primitivas y un anfibio con miembros terrestres a?n por desarrollar que sale del agua y se adentra hacia el continente dur? alrededor de 10 millones de a?os durante el Dev?nico, hace m?s de 360 millones de a?os.

Embri?n de pez cebra modificado.

Embri?n de pez cebra modificado.

La hip?tesis de que un conjunto de cambios gen?ticos condujo al ?rbol de la vida hacia la colonizaci?n de la tierra firme desde el medio acu?tico era algo m?s o menos aceptado en la comunidad cient?fica, pero que a?n no hab?a sido demostrado. Un trabajo liderado por investigadores espa?oles ha demostrado por primera vez que las aletas de los peces cebra ('Danio rerio'), uno de los organismos de laboratorio m?s utilizados por la ciencia, pueden transformarse en estructuras parecidas a las patas de los tetr?podos si se incrementa la actividad de un gen denominado hoxd13.

Los resultados de la investigaci?n, que aparecen publicados en el ?ltimo n?mero de la revista cient?fica 'Developmental Cell', demuestran funcionalmente esta teor?a clave para entender el paso de los animales acu?ticos a los terrestres. Seg?n los autores del experimento, en esta transici?n fue cr?tica la aparici?n de estructuras ?seas distales que formaron lentamente los dedos y la mu?eca en los ap?ndices precursores de las patas de los tetr?podos.

La investigaci?n ha sido llevada a cabo por los investigadores Jos? Luis G?mez-Skarmeta, Fernando Casares y Renata Freitas, en el Centro Andaluz de Biolog?a del Desarrollo, un centro mixto del Consejo Superior de Investigaciones Cient?ficas (CSIC) y la Universidad Pablo de Olavide.

"Nuestros experimentos demuestran por primera vez que, si aumentamos los niveles del gen hoxd13 en aletas de peces cebra, se incrementa la aparici?n de tejido ?seo de car?cter distal similar al que genera los dedos en animales con patas como nosotros”, explica G?mez-Skarmeta. Sin embargo, los cient?ficos no han podido saber hasta qu? punto afecta la mutaci?n a la formaci?n de estas 'protopatas'. S?lo han podido llevar el desarrollo de los organismos modificados hasta el cuarto d?a de vida debido a que llegado ese punto las larvas necesitan alimentarse por s? solas y para ello necesitan nadar, algo que no pueden hacer con estos miembros modificados artificialmente.

"Hemos acelerado un proceso de 10 millones de a?os hasta hacerlo en 24 horas", asegura Fernando Casares. "Pero este cambio evolutivo ocurri? muy lentamente y acompa?ado de otros muchos cambios fisiol?gicos que hicieron que estos cambios no fuesen delet?reos, como s? lo son en los peces cebra de laboratorio", explica.

Los genes Hox, que forman parte de una familia encargada de distinguir las partes del cuerpo durante el periodo embrionario y son esenciales para la formaci?n de los dedos y la mu?eca, cuentan con unos niveles de expresi?n mucho mayores en la zona distal del rudimento embrionario de las patas que en la regi?n de la aleta equivalente.

En los ?ltimos a?os, varios estudios han comprobado que las grandes cantidades de expresi?n de los Hox en las patas dependen de elementos de ADN reguladores que act?an conjuntamente potenciando su expresi?n. "Es muy interesante que algunos de estos elementos reguladores no se encuentren en el genoma de los peces, lo que sugiere que ha sido la aparici?n de nuevos elementos reguladores lo que ha facilitado alcanzar los niveles de expresi?n de genes Hox requeridos para la formaci?n de los dedos y la mu?eca", indica G?mez-Skarmeta.

De forma resumida, el trabajo liderado por los cient?ficos espa?oles buscaba comprobar si el pez cebra tabi?n es capaz de activar esta funci?n de la misma forma que lo hacen los tetr?podos. Seg?n su hip?tesis, de ser as?, el ancestro com?n de ambos linajes tambi?n era capaz de activar este programa 'dise?ado' para la formaci?n del cart?lago que da lugar a las mu?ecas y tobillos. "Estos datos indican que el ancestro com?n de los peces y los tetr?podos ten?a un genoma preparado para adquirir progresivamente nuevos elementos reguladores que fueron aumentando los niveles de los genes Hox que permitieron el desarrollo de las manos y los pies", dice Casares.



Ver mas


No hay comentarios:

Publicar un comentario